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SUMMARY

An analysis is made of the possibilities of amplification of synchrotron
radiation taking into account the detailed form of the radiation pattern;
collective effects are neglected. While amplification is never possible in
one polarization, it may occur in another in the presence of particle beams
with angular spread of the order of the radiation pattern's aperture angle. -

1. Study of the possibilities of amplification of synchrotron radiation,
as far as we know, was made only by utilizing two essential simplifications.

a) One assumes that for a particle with a given dynamic state, emissivi-
ty takes place exclusively in the velocity direction:
| Qi (E, 0,9) = P, (E) 8 (0 — ) . (1)
i.e., one ignores the detailed structure of the radiation pattern of the par-

ticle.

b) One assumes the distribution function as being isotropic, i.e., in
the absorption operator @ (¢f. (1) (2) (3) '
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Dy = a2 % 9.
2 + o 4 Q
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Only the part ;% is retained.

Certain authors (Twiss [1], Wilad, Wéiss, Smerd [2]) do not advance this
hypothesis, but show that the anisotropy term is generally negligible, for the
impulsion transfer proceeds in the direction of particle velocity. Here we



have an approximation that stems also from the simplification (1). The form
obtained for @ in a preceding work [3] justifies this approximation in the
~variables (E, ¢).

The greater the energy of the considered particles, the more correct are
the simplifications. However, we felt that it would be more appropriate not
to make use of them so as to study the aspect of the phenomena for nonultra-
relativistic particles. The results obtained blend with those of Wild, Weiss
and Smerd [2] at very great energy threshold, but one finds a possibility of
amplification of one of the polarizations, when particles form a sufficiently

directive beam.

In order to conduct this study we start from the expressions obtained in
the work [3], which takes account of anisotropy effects of the distribution
function assumed nevertheless to be "gyrotropic', that is, of revolution
about the uniform and constant magnetic field go into which the plasma is
immersed. The system is assumed to be homogenous. We neglected the colli-
sions and the collective effects: the only phenomena retained are the interac-
tions between the transverse polarization oscillators and plasma particles.
The absorption coefficient will then be written:

4 /m +o
0 wle .t
b= % ¥ i /ﬂ 2 . .
Al Vv, o L TPy, dpgy dpji

' (2)
X ! Py l’ 8(5 | Q% | — (Vi — kan v;i))dn g

2np, g is the distribution function of one particle pulses, | P)|* is the emis~
sivity on the oscillator XA by a particle in a given dynamic state (p;. pu).

In the polarization ¢(azimuthal polarization, perpendicular to the magne-
tic field), we have
vV
JL YA
Pl es ity 10 | 5. oo sin Oy 3
l U! JiL e P Q*] ( )

and in the polarization 6, perpendicular to the former, we have

. Q* j
[Pyjl? = c? <_ -{;‘-! cotg 0 -+ 2:.1 sin 9>2 3 () )
A

In expression (2) we may pass to dimensionless variables
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In these variables operator &) is written :

% Jg
O g =—v, ==} 0-2_
& * <98 t C,Os. 9x“> .

Taking into account that

. .
s (s | Q%] — (v — kg vju)) = v 8 <%— €+ cos O, ) s

we obtain

+¢o -~

by = — Y% 4 nleimic® / 2 mwerdedy
S=1 4 \7% -~ 0

X 8 <1—1 — & - cos Oxy; > | Pyl 2 <:7Hs -} cos 0;;)

The study of this expression's sign assumes the study of the kernel
N(e, x;)==€*| Pj|* and that of the sign of the expression

g g
s T 05

2. STUDY OF THE KERNEL ON THE "INTERACTION STRAIGHT LINE"

Taking into account the Doppler effect, oscillator A interacts "as far as"
a harmonic of number s with particles whose dynamic states are situated on a
straight line D,, of the plan (g x):

S
€ ==cos 0 xj -+ by (6)

When s varies, these lines have a regular spacing between them. The
greater the pulsation vy of the oscillator A the smaller the margin. One may
notice that the region of the useful plane (g, x;)is defined by €22 | - x°% and
represents the interior of an hyperbola. The interaction lines intersect it
always at two points of the upper branch (eventually at infinity if cos® = 1).

Taking into account the interaction condition (6), the kernel assumes on
the line D>\ s the form
: bl

N (5 ) = et (= (eotg 0415 0) 1 e g 0)s 32 () Q)

in the polarization 6 and
c? . . -
N(a,x“):: u—zgﬁﬁ*éxi u-sm*OJ,-(u sin Ox.L) (8)

in the polarization ¢. We postulated 4;=u sin 0 xj.



We have g* = 1 4 xl%?xﬁ, which defines x, as a function of two variables
€ and X[

It is easy to verify that u sin® x, does not exceed on Dx s the value of
s by making intervene the angle ¥ of particle velocity with

On the other hand, the curves of Eq. xj = const are branches of hyperbolas
with asymptote x; = *g, just as the limit hyperbola which corresponds anyhow
tox; =0 They are interior to each other in the order of xi'which acts as
their parameter forming a linear beam, bi-tangent to the right at infinity.

These remarks allow us to see that the point on D),g realizing the maximum of

X,, is at the contact of D),s and the hyperbola of the family tangent to it.

The region of these points is the conjugate diameter of the direction of D)\,s
relative to all the hyperbolas of the beam, The property of conjugation shows
that two points of same x, on D) g are symmetrical relative to the point real-
izing x, maximum, One may easily see that this median point has for coordinates:

usin? 0
(9)
x ::—*:g—“’ COt 0
m'  usin 0 &
and realizes:
0w g [ Wisin? O\ %
u sin Almu-—s< B (10)

Thus we make appear a parity property of expression (8), which suggest to
use for axes the direction of Dy, s and the conjugate one (cos0 # 1).

We shall postulate

= 1 1
V. | = T o, 2
Py=¢ cos 0, Kl & sin? 0 (QA/ Pi;€08% 0)
say (11)
= 1
quy = & — cos Opxulxy = sin® 0,08 04 (g2, — pay)

' t
In the following we shall omit indices j, but p, j must?ge confused with
the particle's momentum.

In these variables we obtain

J
Dy == 8sN* 0 ———
@) = sin* § 7 an
sin0 4 p3cos?0\':
q2

(12)

ush\Oxl==uq<l-—



in particular on an interaction line D),s of equation
q= = (14

we obtain an expression quite similar to (10)

2\ % 15
usmOvl::s,\=s<1~'%,f‘> @9

by postulating
o, =u?sin? 0 4 ucos? 0 p* (16)

02 = u?sin® 0

b) then has for expression:

sm 0

ngOCOSO
sin? § 6(’"_‘(])2‘"1\1([) q)a

In these variables coefficient b) has a simple form. We now must study
the function N{p, q) in each polarization.

In the polarization 9:

e S (1 (s 15"
N(p,9)= w(!’,q)*g'g‘s I E T G (18)

\

In the polarization B:

N(p, ) =No(p,q) = ——’A u*picos® 0 J2 ( (1 - (;?; \/&;) (19)

As one could have expected these functions are even with respect to p. We
should note that (19) -is zero at p = 0. This is explained by the easily veri~
fiable fact that in this polarization the radiation pattern is divided into two
lobes. 1In the direction of particle velocity the emitted power is zero (Fig.l).

v 7 These two properties are not link-

—é%:::::::::::>—4— —{}EEEEE%%%%%%——— ed in a perfectly trivial fashion since
the radiation pattern yields for a gi-

ven dynamic state the emitted power on
different oscillators, whereas kernel
Fig.l ' N(p, q) yields the power emitted on a

single, quite precise an oscillator,

as a function of the dynamic state of

[ o PO R S S [s]
Polarisation ©

the emitted particle.

It is easy to see that for a fixed s, kerrels as a function of p, have the
following course (Fig.2, next page).
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3. STUDY OF THE KERNEL WHEN s VARIES

When s increases, the relative width of the peaks decreases. Let us now
see the aspect of a N{p, q) cutaway for p = constant. We must study

8 g 1 S (20)
af ) e ) )
as a function of p in the polarization ¢ and

c? ) . az 3
- u? p*cos* 0 J3 (s 1——“';2“ (21)

0

in the polarization 0.

a) Case of Polarization O

Case (21) is particularly clear. Indeed (cf.[5], p.260)

Jo (x) < J,(s) for x <|

1
3,6 < 5Ly,
mw7in3is

Thus, Ne(p, q) approaches zero as s w.

On the other hand, for s=q, Ny(p, 0,) = 0; (x, = 0). Thus there is at least
one maximum that has to be situated. To do so one may employ approximation
formulas for Bessel function of great index. The argument being close to the
index, one must be very cautious in the choice of approximations.



We may use the Cauchy-Meissel approximation (cf. [5], p.245) in the zero
order. One must then be assured that

O\ %
S-——s( —~2L> > ,‘Il
say: \ s
s > (1?‘/:
ALV VAT
We then have : Js (s( 1— ;;‘) )-"«’ ;-?T,/EJ%,T.: l",

In principle, the Carlini approximation is valid for a fixed x smaller
than the unity.The closer x to the unity, the greater the minimum rank of S
starting with which it constitutes a good approximation. We have not found
any estimate of S as a function of x. However, we shall make use of this
approximation when

s <L u’lt.
Then we have
—% a,
(=8 = o) )"
ST — =2 )% ) > === {exp ap><~——.—-~> .
s V2 11 u?,,

The Cauchy approximation yields a decreasing behavior for s » @¢%’ and that
of Carlini yields an increasing one for S < a3?. Therefore, the maximum
must be located in the neighborhood of s=¢*, but function Jg (sx) is repre-
sented by neither of the preceding approximations in this domain (transition
zone). The Nicholson approximation or its improved version by Watson are not
algebraic. Thus we shall renounce here any detailed study of its behavior in
this region. We shall simply consider that the maximum will be located at
s == 0% and we shall evaluate it with the aid of the Nicholson formula:

I(sx) %(%)y (1;“%)“
% K, (3"’ s _(_l*x)'i’.)

T 3s% x %

for

! o % .
x=< ———s;’—> et 5 == 0, ",

.the argument of Ky, becomes a constant independent of p:

A 3
LX)~ (n2%3%) 1 Ky (2-%) X o, %

For a fixed p, Ne(p,q) maximum thus has the value:
c? cte p’

S uptcos? O X = ~ Py
al P €os a, (pturcos? O + u’sin® 0) %




This function increases from zero to infinity. Surface N¢(p,q) has the shape
of a basin of which the edges ascend to infinity. TFigure 3 gives a perspect-
_ive view of the surface Ng.

b) Case of Polarization ¢

Let us now examine the second polarization. The kernel is written with s
fixed:
o= (1= (=)
" N¢ is maximum at p = 0; the greater s, the sharper N¢.
When p is fixed, we may utilize the Cauchy approximation for Jg(sx) if

s » o3

* ~ ’ 3‘/' 2 Y 0’: '
L (sx) =~ 3, (5) ~ 5 2,/;-I‘ (_3_> s and  s? (le— —S~2—> I (x) ~ K s%% .
No (p,s) grows asymptotically.

For s € 0,%,, we utilize the Carlini formula, thus obtaining

a,

az\ .. o \*% 1 T=\ s
5? <1 —~*S'.f> 1 (s (1 i > > Xy (En"- e, <—-~~as~> .
b+

This function increases with s.

‘ Thus, one may think without risking the error that function N¢(p,s) is
continually rising with respect to s, so long as p is fixed.

The shape of function Ny is reptesented in Figure 4.

4. "THE CONTINUOUS SPECTRUM'" APPROXIMATION

The higher the frequency, the closer together the interaction lines
so that one may often do away with the s mmation on s and the function § in
the expression (17) for bp. This is tantamount to taking the "continuous spec-
trum" limit". We then have:

Noame [0 (" in20 cos 0 P
nle f f . . _sin20cos
bi — L —— L g% d)' 1 d(_l X 2Rr—"—— N \,F/ tﬂ Tg 7991
J=1t Yv, 7 o/ sin* b dq \ze)
— sin

This approximation is valid if there are many interaction lines in the
energy interval Ae of the variation scale of the distribution function, say:
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and we then have the criterion

In general we shall be interested in frequency amplifications in which
the considered particles are best emitters, i.e., in frequencies close to the

critical frequency for energies typical of plasma particles (cf.

[41).

The

preceding criterion then states that the number of the critical harmonic must
be great ahead of the unity.

This criterion is not always applicable, for the estimate made by us
there concerning 3g/de may result faulty.

ed every time.

This question has to be reconsider-

Table 1 gives the order of magnitude of the quantities of interest:

the width A8 of the associated synchrotron

c
= v/c, typical of the population envisaged.

ane

is

r

¥

We may see that for B < 0.95, radiation is not seriously concentrated
within an angle surrounding the velocity.
are critical frequencies (cf.[4]), giving an order of magnitude of the ''most
interacting" frequencies with particles,

.
runction o

£
L

B 0,5 0,6 10,7 {08 l0,9 i 0,95 0,96 0,97 0,98 0,99 0,999 0,999%
1 — B2 0,75 } 0,64 0,53 0,36 (0,19 9,6 10"‘"7,8 107%15,72 10~% 410-% |2,25 10-?! 2510-% | 210"
(1—p3)% 0,866} 0,8 |0,7310,6 [0435| 0,31 0,28 0,24 0,2 0,15 0,05 0,014
AGe Emissivity direction
~ e L on q70 | 160 | 13 | 1l | 830" | 3o 0042’
{ 80ra = /(1= P9)}| almost inexistant
ne == sin?0(1 — Bz)-sn
. 33 1 1 1 1 1,2 3,3 4,5 7,3 12,5 29 8§00 36 000
~ w(l—p?) L
ve ) i
e~ gi=n\V1—8 086 | 08 0,73'1 0,6 “o 535, 1,04 | 1,26 | 1,75 | 2,5 4,35 40 ' 500
Low CYC1°tf0n and Great gyromagnetic energy Synchrotron
gyroma;_netic energy
Remarks . —
Only a limited num- |The 'continuous spectrum' Application
ber of harmonics approximation is the most of "contin.
participate in the often valid spectrum”
interaction nearly always
L | correct
TABLE 1

Associated to these typical energies
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We computed for each value of B the order of magnitude of parameter u
for the critical frequency and the number n. of the critical harmonic (this
makes sense only if nc > 1). It is thus possible to make more precise the
extent to which we are faced with synchrotron radiation and to what measure
the "continuous spectrum' approximation is correct.

We may see that the directivity condition required to bring about the
amplification is not too severe within a fairly broad region. This region
covers even an energy range where radiation is of synchrotron type, i. e.

toward U-——ﬁ) 10-2,

6. ULTRARELATIVISTIC CASE

We must now show that at the limit of very high energies amplification
is not possible.

g
We may indeed consider that in this case neither g nor 9g vary for a q
on an angle of the order A0 synchrotron, The quantity 9dg/dq may be taken out

of the integral over p in (22). It is easy to be convinced that

[ No (7, ¢) dp = 9 (¢).

is a rising function of q. We obtain

by~ — f‘ dq ;‘% 2(9) (23)

For reasons already indicated and in agreement with [2], we find a posi-
tive result. We therefore may state that within this limit the details of the

radiation pattern become too fine relative to those of the distribution function.

7. EXAMPLES

We shall study in Appendix I the case of a thermal beam launched in the
direction of the field with a relativistic¢ velocity, and show that such a dis-
tribution may in no case lead to the ampllflcatlon, no matter what the tempera-
ture of the beam.

In Appendix II we shall also consider the case of distribution, where an
orthogonal particle impulse is concentrated around a mean nonzero value, by
taking interest in_ an oscillator perpendicular to the magnetic field. The

various situations are classified with the aid of three parameters:

~ the mean thermal energy of particles

~ the directed energy of the beam

3\%
d-"—: (l 'l' -}-:-"2“[;‘)
mec-



- the energy, starting with which particles interact in a notable fashion
with the oscillator A (g, in the Appendix II)

i:= g,

We reach the following criteria:

- if 1 > d, there can be no amplification (particles insufficiently ener-
getic;

- if 1 < d and (d/)¥*—1 » 2t , there is no amplification (Beam too cold);
- if i < d and (d/)¥*-—~1< 2 , no amplification, the beam being too hot;
- if i < d and @)Y*—-1 2 2t , there is amplification;

~ if 1 < d and (@)¥*—1 <€ 2t ye find ourselves in a case similar to that
of very high energies. There is no amplification.

8. CONCLUSTON

We note the possibility of amplification of gyromagnetic or mnearly synchro-
tron radiation by jets of energetic particles rather directive only on one of
the polarizations. However, we note that favorable conditions are rather dif-
ficult to find. Notwithstanding, this mechanism is of interest for lending it-
self fairly well to the creation of an anomalously polarized radiation.

%%%% T H E END %%
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APPENDIX I

CASE OF A BEAM PARALLEL TO THE MAGNETIC FIELD

It is necessary to carefully identify function g intervening in (5).

13

R. G. Synge [6] gives the following expression (Maxwell-Juttner distri-

bution)
fdr, dry dry dM, dM, dM;
= K exp & Moha dry dry dry dM, dM, dM;
. C’ .
&=
*
For a = l, 2’ 3 I\'IK == fn—cl-{u—! = MXg
For a = 4 = im* =imeg = mx,

Aqis the mean velocity four :

Aahs = —1
*
M=he=0; A= 2 _xxy
mc _
o I — XD = A, =il + X%

In order to recognize function g, we must pass in the variables

Xy = X3

Xy = ('\"x + x)h
X

0 =Arctg ™=
Xa

Jacobian calculation gives:
fdrodr, dry dx, dx, dxg m® == K exp mg & (xo Ao) x | dxy dxu d0dr drydr,.

Whence
g=KexpmE&xh,

nc? Y%
= K oxp 7= <xu X — (1 + X ﬁ)g >
The contour lines of g are the straight lines:

N
€ == X (1 + X ﬁ) v+ H

Their inclination does not exceed 1 and approaches the unity when Xj;—» o (Vy—>c¢),.

the smaller H, the more important are the values assumed by g .
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Among these lines the one that crosses the useful region (g2 =1+ X%

and possesses the smallest ordinate at origin, is tangent to the limit hyper-
bola.

It is easy to see that the variation of g assumes a decreasing trend pur-
suant to any line of direction interior to the asymptote angle, so that in this
case the amplification is not possible, no matter what the temperature. This
resylt stems from the fact that the direction of the beam was taken according

to Bos thus rejecting the most probable state at the limit of the useful re-
gion. :

APPENDIX 1T

CASE OF A DISTRIBUTION WITH AVERAGE OR ZFRO ORTHOGONAT, TMPULSTON

Let us examine the case of an f.d.d. (?) constituting an overpopulation
in the vicinity of the state (X;, X.

The Maxwell-Juttner distribution function provides an example of such a
distribution which, unfortunately, is not gyrotropic as required by theory
that yielded the expression for b). This quality can be obtained by perform-
ing integration of the orthogonal beam velocity on the polar angle. This
amounts to taking the sum of a large number of distributimsdiffering by this
angle, We thus obtain the distribution

1 - me? o N ,
. Y A, 2V VS e N ot e N {1 RV WA
K 2_75_/ ad CXp KT (Vi Xy —xp Xy all\lL—q;)—f-\l—er + X)) 5)

¢ being the polar angle of particle orthogonal velocity. We shall have:

mc? 8 N mc?
g(e, xy) =K exp ?T—(xu Xy — 8(1 +Xl+)\“)’) I, (kk‘——xl X, )
I, is a Bessel function, modified, of first kind and of the zero order.

It is clear that the contour lines of such a function are not simple.
In the majority of cases and particularly for those of interest to us, we have
mc® > kT, so that it will be possible to take an asymptotic approximation of
the Bessel function. Taking the lowest order according to

it is clear that this appiox A
borhodd of the limit hyperbola where x; " O.

’_l
m
—t
[«
T
C
C
+
=
¢
9
f
'.

In the neighborhood of the limit hyperbola the contour lines just about overlap
the straight lines

m;Xu = s(l%—Xh—F)ﬁ)” 4 const.



In other cases we shall have to study the countour lines of
i
ex T_Cj xu Xy b x; X, —¢ 1+X| 14X 1\ 2 % ”:7}——_;27‘-—---
p k—r il 1} 1 1 1l N . zn me

k%

Since we search for quantitative results, and in view of slowness of x;~*?
variations relative to the expomential, the course of contour lines will be
sensibly given by

) ;3 F3I\Y
xn.Xu +xp X —e(1+ X, + xl) —H

To greatest values of H correspond the greatest values of the distribution
function.

These considerations tend only to provide a physical justification for the
study of a distribution function of the form

mc?

H -

PR T

For simplicity let us further assume that X| = 0 and that from now on
we shall postulate X| = a so as to alleviate the writings.

The contour lines constitute ellipses of equation :
(e -+ HI + a4 ax = a* (H*— 1)

They are real if lH[ > | and the only ones to intersect the useful region
(e*—x* -——1>0) corresponding to a negative H.

It is of interest to study their intersection with the limit hyperbola.
The equation at e of the points of intersection is written:

(e (1 + @) - H) =

This equation always has a double root for H < 0, which corresponds effectively
to tangency with the hyperbola, provided € > 1.

For — (1 +a%% <H << —1 the ellipses are entirely within the region. <

For + H < — (1 + a*" they are bi-tangent to the hyperbola. In reality
only part of these ellipses constitutes a contour line; it is very percept-
ible in a representation in the plane (x;,xu): for H< —(1-+a?)"* the curves
pass in the region x) < 0; the corresponding points have no physical signifi-
cance of any kind. In the last resort we must preserve the part of the chord
of the points of contact.

Let us take interest to the amplification by an oscillator perpendicular

teN

. . - .
te B, for such a distribution,

To that effect it is convenient to refine the sign of the gradient of g
in the direction of axis €.

The curve for sign change is the location of the points of contact with
the contour lines of lines, parallel to that direction.



We find a hyperbola of equation

2

4 1

D i ‘l ==y

1--a

Fig.II, 1 shows these different curves. Dashes indicate the assumed course
of the function

, mc?
el (1 +a?) o </J‘ "1,>\1>

The zone corresponding to important values of g and @ig is shaded.
This zone is concentrated around the contour line at 1/e from the maximum.
The value of H corresponding to it is given by

me? mc?

o me
T U™~ %

KT
H 1L
. mc

The corresponding point on the curve of gradient nullification has for ordinate

a=yl+a <1 + ﬂ)

mc?

The semi-axis about X is worth

Civen this, wc shall be in a po
fication by placing upon this d

qg=2=8
pcos 0= xy -

o, = u(l 4 xj) %
whence

o= ()" @+ A

This curve crosses the hyperbola

e=(+a)(1+x).

at a point of ordinate

~
—
~

+
u

: . 1--a
A real intersection point will be obtained if - = > 1
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.

say u << (l -+ a?) A
or still < +a)"
The ordinate at the ofigin of the curve ¢ ::Cfb is ., &;=w*?* and the pre-

ceding inequality is interpreted in-a very simple manner: it suggests that
this curve places itself above the summit of g distribution.

The relative position of the curve & :=G? and of the region whera aug takes
important values are indicated on the following figures (II, 2,3,4,5). Represent-
ed in them is the contour line of g limiting the region whewe i,g can assume im-

‘portant values, and also the curve of @;g sign change in the same region.

2 kT
Visa (e Ll )=e
ol mc? !

Fig. 11, 1

Around the curve & (e = ¢’ we represented the region where kernel Ng(p,q)
assumes important values.



) e, > V14 a (fig. 11, 2)

The curve & is located entirely
within a zone where ;g is positive.
There is no amplification.

Explicit Criterion :

A P} va®
(1 + Eﬁ?) < &

say, d <i

18

2) & < V1+a* (g 11, 3)

The width of the eflipse is
notably less than the width at the
lowest point of the limit ellipse
of §. We obtain the criterion

R ¥
(Lg;f? —1 >» (

%)
s
- s&y (%) —1 > 2

mc?

Then there is practically no
interaction with this polarization
the beam being too much directed
so that the particles, and nearly
all of them, have the direction
of the oscillator and interact
little, on account of breaking in

Fig. II, 2.

Fig. 11, 5.
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two parts of the radiation pattern.

3) & emerges from the zone where (g assumes notable values prior to pass—
ing into that where Mgis positive; or more simply, the width of the limit
ellipse at € = V1 + a“ is smaller than that of the courbe for & (Fig.II,4).

The half-width of the ellipse is of the order of @ KD™ ang the widtn
of § at this point is easy to compute. me

We obtain the criterion:

.

1- n/a x
( A+ay™ o (2&1‘)
u mc?

d\ %
(';‘) — 1> 2

4) (Fig.11,5)

€, < 1+ a?
e ) s "
Qray™ ) o (31)

u? mc?

s
say <‘71> —1 <2

The zone where the kernel assumes notable values crosses the regions where
M, & assumes either sign.

The kernel growth along & being given, the regions where Mg is positive
contribute to by with a weight g P12 which is superior, though,gis of
same order. One may thus feel that, generally, such a situation would not
lead to the amplification.

5) When the inequality of 4° is made very strong, we find ourselves confront-
ed with the classical. case where the detail of the radiation pattern does not
intervene. In this we find again the case whereby amplification is impossible.
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